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Abstract

As value-added estimation spreads to fields outside education, where sample sizes
may be small and experimental validation infeasible, estimators that perform well
without millions of observations are increasingly needed. I clarify conditions under
which existing methods are identified, sign their biases, and derive asymptotic standard
errors, and I develop a likelihood-based estimator that explicitly models the process of
sorting of students to teachers. I use subsampling experiments based on a dataset of
math teachers and math test scores in New York City to compare the bias and variance
of each estimator, as well as the coverage properties of confidence intervals. Errors in
variables can bias estimates, and the presence of covariates that do not vary within
teacher leads to a lack of point identification; I discuss these issues and how they
influence choice of estimator.

Value-added estimators have been extensively used to study teachers and other groups.
These estimators describe how dispersed teachers (or others) are in their effects on an
outcome: for example, variation in teacher quality contributes to about 2% of the variance
in student test scores. Value-added modeling is also used by school districts to rank
teachers and make firing decisions. Although many papers have investigated whether and
when the identification assumptions of value-added models hold (Rothstein, 2009, 2010;
Koedel and Betts, 2011; Chetty et al., 2014; Rothstein, 2017), the statistical properties of these
estimators are less studied, especially in finite samples. For example, standard errors and
hypothesis tests are often unavailable, and parameter estimates can be badly biased even
when identified. As value-added estimation spreads to settings outside education, where
data may be small and experimental validation infeasible, understanding identification and
inference in value-added estimation is increasingly urgent.

A common use of value-added modeling is to measure what portion of variance in
outcomes is due to variation in teacher quality. This number is of interest because if teachers
vary little in their quality, then attempts to hire and retain better teachers may have little
effect on student achievement. Estimates vary: Kane and Staiger (2008), who experimentally
validated their estimates, albeit with large standard errors, found that the standard deviation
in teacher quality in Los Angeles was 10% of a standard deviation in test scores, while
Buddin (2011) measured 27%. 1

1What constitutes a large amount of dispersion in teacher quality is contentious. If the standard deviation
of teacher quality is only 10% of the standard deviation of test scores, teachers contribute only 1% of variance.
On the other hand, since teachers affect many students and have persistent effects on students’ income and
educational attainment, the value of improving a teacher’s effectiveness by one standard deviation could be
quite high (Chetty et al., 2014).
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I think of a value-added model as one with the following properties: Each observation i
corresponds to some individual j(i). When forming the best linear predictor of an outcome
given an indicator for j(i) and covariates, the coefficient on the indicator is µj(i). These µj(i)
have a causal interpretation: If a student’s teacher j is experimentally replaced with teacher
j′, the student’s outcome increases in expectation by µj′ − µj. The µ are drawn identically

and independently from the same distribution, µj
iid∼ F, and the distribution F itself is

of interest. The individual components of µ may also be of interest. High-dimensional
covariates and few observations for each teacher are common complications, making it
inadvisable to simply estimate µ with a fixed effects regression. This setup lends itself
naturally to an Empirical Bayes estimation procedure, which first estimates the distribution
F and then forms a “posterior" estimate of µ. Empirical Bayes methods have been used
to study teachers and in various other settings. For example, Ellison and Swanson (2016)
study how much of the variation between schools in the fraction of high math achievers that
are female is due to variation in schools. Feng and Jaravel (2016) study variation in patent
examiners’ propensity to grant patents and which patents benefit from being assigned to
a lenient patent collector. Furthermore, many studies that do not rely explicitly on the
teacher value-added literature share this literature’s interest in estimating the distribution of
individual effects. For example, there is a wide literature in labor economics on estimating
individual and firm effects (i.e. Abowd et al. (1999)). Recently, Barnett et al. (2017) studied
“the extent to which individual physicians vary in opioid prescribing and the implications of
that variation." Others have studied hospital effects on C-sections (Kozhimannil et al., 2013)
and variation in judge sentencing tendencies (Green and Winik, 2010).

I survey several popular value-added estimation procedures and study their statistical
properties. I discuss conditions under which models are identified, clarify whether esti-
mators are consistent, and derive asymptotic, analytic standard errors. I also develop a
maximum (quasi-)likelihood estimator. I base empirical exercises off a dataset of teachers
and students in New York City. Monte Carlo simulations based on this dataset, with simu-
lated teacher effects and outcomes, confirm theoretical predictions about bias. In particular,
these simulations show that bias varies with the correlation between teacher effects and co-
variates, and suggest that a bias-corrected maximum likelihood estimator nearly eliminates
bias with no increase in variance. Next, by drawing small samples from the population of
teachers and treating estimates from the whole data as the truth, as in Buchinsky (1995), I
check the coverage probabilities of confidence intervals constructed using the asymptotic
distributions of the estimators and find that they are slightly anti-conservative in small
samples. Throughout, my focus is on the portion of variance that is due to variation in
teacher quality. Although I derive formulas for individual value-added scores, I do not
evaluate the accuracy of these scores. For clarity, I use terminology relating to teachers and
classrooms since value-added modeling is most used for studying teachers. However, these
results extend readily to different settings.

This paper proceeds as follows. In Section 1, I develop a toy model to motivate why
policymakers may care about the variance of teacher effects. In Section 2, I recap the
historical development of the value-added literature and the settings in which value-added
estimators have been used. Section 3 describes several estimators whose properties I develop
and compare. In particular, subsection 3.4 notes that when some covariates do not vary
within teacher, the variance of teacher effects is only partially identified without further
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assumptions, and subsection 3.5 discusses how different estimators behave in the presence
of errors in variables. Section 4 discusses the behavior of several procedures in Monte Carlo
experiments, and Section 5 concludes with recommendations about which estimator to use.

1 Toy Model, Motivation

Why should policymakers care about the standard deviation of teacher effects? One plausible
motivation is that the benefits of hiring, firing, and retraining teachers are increasing in
the standard deviation of teacher effects. In particular, imagine that teacher value-added
is accurately measured and is a sufficient statistic for teacher quality. Then the benefits
of firing teachers in the bottom p fraction of teacher quality and replacing them with
randomly-drawn teachers is a linear function of σµ.

Teacher quality is µj = σµε j, where ε j has mean zero and variance one. µj and ε j have
CDFs Fµ and Fε. Then the benefit firing teachers in the bottom p fraction and replacing them
with randomly-drawn teachers is

E
[
µj
]
−E

[
µj|F(µj) < p

]
= 0−E

[
µj|Fµ(µj) < p

]
= −σµ E

[
ε j|Fε(ε j) < p

]
∝ σµ.

2 Literature

The extensive investigation of the contribution of teachers to student achieve-
ment produces two generally accepted results. First, there is substantial variation
in teacher quality as measured by the value added to achievement or future
academic attainment or earnings. Second, variables often used to determine
entry into the profession and salaries, including post-graduate schooling, experi-
ence, and licensing examination scores, appear to explain little of the variation in
teacher quality so measured, with the exception of early experience (Hanushek
and Rivkin, 2010).

The earliest work on teacher quality noted that teacher output appeared unrelated to
observable teacher characteristics other than experience and perhaps teacher test scores,
and sometimes argued that variation in teacher quality is not an important determinant of
differences in educational outcomes (Hanushek and Rivkin, 2010, 2006) 2. However, later
work has focused on “outcome-based" measures of teacher quality, treating quality as a
latent variable to be estimated, and found that teachers explain about 1% to 3% of the
variance in student outcomes (Hanushek and Rivkin, 2012).

The identification requirements of value-added models that treat teacher quality as a
latent variable make such models controversial. These models typically involve a sorting on
observables requirement: Any association between student attributes and teacher identities
must be captured by variables included in the model. This requirement is necessary both

2Briggs and Domingue (2011) finds that teachers’ educational backgrounds do predict teacher effects
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Table 1: Estimates of the variance of teacher effects, V̂ar(µj), and forecast bias adapted from Table 6 of
Kane and Staiger (2008). “1 - forecast bias" is the coefficient from regressing experimental test scores on
non-experimentally estimated value-added scores. 95% confidence intervals are in brackets.

Math Reading
Var

(
µj
)1/2 0.219 0.175

1 - forecast bias 0.905 1.089
[0.552, 1.258] [0.523, 1.655]

for estimating the fraction of variance in student outcomes that is due to variation in teacher
quality, and for evaluating individual teachers. Sorting on observables could be violated
if, for example, students assigned to better teachers have parents who push them to study
hard. More subtly, imagine that all teachers are identical, but some teachers are consistently
assigned high- or low-achieving students; if student achievement can’t be predicted well by
observables, then these teachers will appear to be the cause of their students’ achievement,
and teacher quality may appear to vary even when it does not. The validity of the sorting
on observables requirement has been contested in educational settings (Rothstein, 2010).
However, in this paper I focus on issues that can arise even when identification requirements
are obeyed.

Several studies have addressed whether value-added scores are “forecast unbiased":
that is, whether a teacher with a value-added score of µ̂ causally raises test scores by µ̂, in
expectation. Consistent estimates of the variance of teacher effects, V̂ar(µj), are necessary
for forecast-unbiased value-added scores, since value-added scores are a product of a mean
residual and a shrinkage factor based on V̂ar(µj). The literature has typically interpreted
forecast bias as a sign of insufficient controls for student-teacher sorting, but it can also
reflect bias in V̂ar(µj), an issue I consider in this paper. Randomized and quasi-experimental
analyses have somewhat ameliorated concerns that sorting on unobservables biases estimates
of the variance of teacher quality upwards. 3 Previous studies have generally concluded that
value-added scores are close to forecast-unbiased, after converging on sets of specifications
that tend to work well (Jacob, 2005; Kane and Staiger, 2008; Rothstein, 2009; Chetty et al.,
2014).

However, experimentally validated estimates tend to be smaller than other estimates, and
methods of checking for bias are controversial. One of very few randomized assessments
of value-added modeling comes from Kane and Staiger (2008), who estimated estimated
individual value-added scores for teachers in Los Angeles, randomly assigned students
to teachers in the next year, and confirmed that the previous value-added scores were an
unbiased predictor of future student achievement. The results of Kane and Staiger (2008),
reproduced in Table 1, show that a teacher one standard deviation above average improves

3In addition to the studies by Kane and Staiger (2008) and Chetty et al. (2014) cited below, Kane et al. (2013a)
find, using the Measures of Effective Teaching project, that a teacher predicted to improve test scores by 1 unit
improves test scores by 0.7 units when randomly assigned to different classrooms. This discrepancy could
be either because value-added scores were tainted by sorting of students to teachers, or because Var(µj) was
overestimated. They estimate Var(µj) to be 2.6% to 3.2% in math and 1% to 1.4% in reading.

The value-added methods used in the MET project are not easily comparable to other methods surveyed here,
because the researchers had access to video data and teacher quality surveys.
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math scores by 0.219 standard deviations, with an analogous estimate of 0.175 for reading;
their experimental results suggest that estimates are nearly unbiased. However, they are
unable to rule out large degrees of bias. Estimates of about 0.1 standard deviations are
relatively small for this literature. For example, Buddin (2011) also analyzed data from Los
Angeles – the same district studied by Kane and Staiger (2008) – to generate value-added
scores that were published in the LA Times Felch et al. (2010) and found that a teacher one
standard deviation above average improves math test scores by 0.27 standard deviations.
That is, Buddin (2011) finds that teachers account for 7% of the variance in math test
scores in Los Angeles, while according to Kane and Staiger (2008) they account for only
1%. Lacking experimental data, Chetty et al. (2014) introduce the use of “teacher switching
quasi-experiments": they argue that teachers switch schools for exogenous reasons and
that after switching schools, teachers’ value-added will not be correlated with the ability of
their current students. The quasi-experiments indicate that forecast bias is quite small: the
coefficient from regressing changes in test scores with changes in value-added (with controls)
is approximately 0.97 and at least 0.9. Rothstein (2017) replicates the quasi-experiments in
North Carolina and questions the randomness of teacher transfers. He finds similar results
when using the same specifications as Chetty, Friedman, and Rockoff, but a forecast bias
of about 10% when using test score gains instead of levels as the dependent variable; he
argues that this is because high value-added teachers tend to move to improving schools.
On the other hand, Chetty et al. (2017) argue that Rothstein’s specifications can generate
bias, and show through simulation that it is possible to find that Rothstein’s tests fail even
when identified.

Despite uncertainty about how to test identification restrictions, most researchers agree
that in large samples and with controls for past student test scores, value-added models can
accurately estimate the variance in teacher quality. (Useful reviews are given by Koedel et al.
(2015), Hanushek and Rivkin (2010), and Staiger and Rockoff (2010).) By contrast, using
value-added models to assess individual teachers remains controversial (Koedel et al., 2015).
Briggs and Domingue (2011), for example, re-analyze data from Buddin (2011), whose results
were published in the LA Times, and find that with richer controls, individual teachers’
value-added scores shift dramatically. Staiger and Rockoff (2010) state that value-added
scores have a reliability of 30% to 50% from year to year.

In summary, two well-studied areas are whether the identification requirements of
value-added models are obeyed and how accurately these models can evaluate individual
teachers. There has been relatively little work on how value-added procedures behave in
finite samples and how to quantify uncertainty in the structural parameters that describe
the distribution of parameter estimates.

3 Estimators

In this section, I lay out a statistical model and discuss estimation of that model via maximum
likelihood. I then discuss two other estimators: the estimator used in Kane and Staiger
(2008), and a modification to Kane and Staiger (2008)’s estimator similar to those suggested
by Guarino et al. (2014) and Chetty et al. (2014), “modified-KS." Both maximum (quasi-
)likelihood and modified-KS consistently estimate this model. I show that the Kane and
Staiger estimator consistently estimates this model after imposing a no-sorting restriction,
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Table 2: Comparison of estimators. Asymptotics are as the number of teachers approaches infinity.
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Consistent under baseline model Yes Yes No Yes
Consistent under baseline + no sorting Yes Yes Yes Yes
Sign of bias under baseline model Up ? Down ?
Closed-form solution No No Yes Yes
Closed-form asymptotic standard errors MLE ? GMM GMM

and is otherwise negatively biased.
Observations are at the student level. Student i has classroom c(i), teacher j(i), test score

yi, and covariates xi
4. Data is drawn from some distribution D. (Although a likelihood

function will be derived using normality assumptions, D need not be normal.) I describe the
model in terms of best linear predictors. The model’s parameters are best linear predictor
coefficients and variances of teacher effects and error terms. Asymptotics are as the number
of teachers approaches infinity.

To begin defining best linear predictors, stack all of the data from teacher j, who has
ns students, into a vector yj ∈ Rns , a matrix xj ∈ Rns×k, and mean covariates ¯̄xj ∈ RK 5. yj
and xj both have one row for each student. Also define a variable sj that encapsulates the
configuration of students to classrooms: For example, sj tells how many students are in
each classroom, and whether any two students are in the same classroom. C(j) are the set
of classrooms taught by teacher j, and I(c) are the set of students in classroom c.

Test scores are generated according to

yj ≡ µj + xjβ+ νj. (1)

The teacher effect, µj, is teacher j’s value-added, her causal effect on the outcome of
interest.

In order to ascribe a casual interpretation to parameter estimates, we need sorting on
observables. Sorting on observables requires the usual orthogonality restriction that νj is
orthogonal to covariates xj, so that we consistently estimate β. But sorting on observables
requires not just orthogonality conditions, but independence conditions: unobservable shocks
to test scores must be independent of assignments to teachers, so that νj ⊥⊥ sj|xj, ¯̄xj. To see
why this second restriction is necessary, imagine that all teachers are identical – µj = 0 ∀j –
but some teachers are consistently assigned students with high values of νj. In that case,

4I use bolded letters (i.e. x) to represent vectors, and bolded and italicized letters (i.e. x) to represent
matrices.

5 ¯̄xj is a precision-weighted mean, in a way that will be made clear.
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some teachers will consistently appear to have students that over- or under-perform what
would be expected from their covariates, making it appear that teachers vary in their quality
when they actually do not.

We can also model the relationship between teacher effects and covariates with teacher
quality as a linear function of mean covariates:

µj = ¯̄xT
j λ+ µ̃j, µ̃j ⊥ ¯̄xj, sj (2)

λ is a vector governing the association of covariates with teacher quality. It could capture
teacher-specific characteristics – for example, more experienced teachers are better – or
reflect sorting – for example, teachers of honors classes may be better.

Var
(
µj
)
= Var

(
¯̄xT

j λ
)
+ Var(µ̃j) is the amount of variance in y contributed by teachers;

when teacher effects have a large variance, teachers are an important determinant of y.
When Var(µ̃j) is large, there are large differences in teacher quality that are not predictable
from observables. When variance in ¯̄xjλ is large, there are large differences in teacher quality
that are predictable by observables.

Combining Equations 1 and 2, E∗D
[
yj|xj, ¯̄xj, sj

]
= xjβ+ ¯̄xT

j λ. When there are covariates
that do not have within-teacher variation, β and λ are only partially identified. Section 3.4
derives bounds on Var(µj) and discusses how each estimator behaves in the presence of
covariates that do not vary within teacher. In Sections 3.1 through 3.3, I assume that all
covariates have within-teacher variation so that the model is point identified.

3.1 Maximum (Quasi-)Likelihood

In order to make this model estimable via maximum likelihood, we need several more
assumptions. First, β must correspond to an unrestricted linear predictor. That is, define
the best linear predictor π, so that

E∗D
[
yj|In ⊗ vec(xj), ¯̄xj

]
=
(

In ⊗ vec(xj)
)
π + ¯̄xλ.

We need that
(

In ⊗ vec(xj)
)
π = xjβ. Finally, let’s put more structure on the covariance

of errors and assume homoskedasticity with respect to sj. Define E
[
νjν

T
j |sj

]
≡ Σj. Denote

parameters η =
(
β,λ, σ2

µ, σ2
θ , σ2

ε

)
.

Σ
(
η, xj, sj

)
i,i′ = σ2

µ + σ2
θ + σ2

ε when i = i′

Σ
(
η, xj, sj

)
i,i′ = σ2

µ + σ2
θ when i 6= i′ but i and i′ are in the same class

Σ
(
η, xj, sj

)
i,i′ = σ2

µ when i and i′ are not in the same class

No model like the one above has, to my knowledge, been estimated via maximum
likelihood, but rather with GMM-like “moment-matching" procedures, as discussed at
length below.

To generate a likelihood function, we must assume a functional form for the distributions
of yj and µj. Appendix A proves the validity of a quasi-likelihood interpretation: maximum
likelihood based on normality delivers consistent estimates of η, even when the true
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distribution D does not have normal disturbances. If the true values of parameters are η∗

and maximum likelihood based on normality assumptions estimates ηF, then η∗ = ηF. That
is, consider the model

yj|xj, ¯̄xj, sj ∼ N
(

xjβ+ ¯̄xT
j λ, Σ

(
η∗, sj

))
with the corresponding likelihood function f

(
yj, xj, ¯̄xj, sj; η

)
. Appendix A proves that

ηF = arg maxη ED log f
(
yj|xj, ¯̄xj, sj; η

)
. Appendix B derives a relatively simple closed-form

solution for the likelihood. A recurring theme is that important quantities are given in terms
of classroom means ȳc, deviations from classroom means ỹi, precisions hc = 1

σ2
θ +σ2

ε /|I(c)| ,
precision-weighted teacher-level means ¯̄yj, and classroom-level deviations from teacher
means ˜̄yc. Equations 21 through 25 define these terms.

Solving for the likelihood without integrating out teacher effects, as in Appendix
Equation 29, gives an integral with a Bayesian interpretation that yields an Empirical
Bayes posterior: Teacher effects are drawn µj ∼ N

(
¯̄xT

j λ, σ2
µ

)
, and test scores are drawn

¯̄yj ∼ N
(

µj + ¯̄xT
j β, 1

∑c∈C(j) hc

)
, so the Empirical Bayes posterior of teacher j’s value-added is

µj ∼ N

 σ2
µ

σ2
µ + 1/ ∑c∈C(j) hc

residual︷ ︸︸ ︷(
¯̄yj − ¯̄xT

j β
)
+

1/ ∑c∈C(j) hc

σ2
µ + 1/ ∑c∈C(j) hc

¯̄xT
j λ︸︷︷︸

E[µj| ¯̄xj]

,

 1
σ2

µ

+ ∑
c∈C(j)

hc

−1


(3)
The solutions for β̂ and λ̂ are intuitive. After concentrating out λ̂, β̂ attempts to jointly
minimize students’ deviations from the classroom mean and classrooms’ deviations from
the teacher mean:

β̂ = arg min
b

1
σ̂2

ε
∑

j
∑

c∈C(j)
∑

i∈I(c)

(
ỹi − x̃T

i b
)2

+ ∑
j

∑
c∈C(j)

ĥc

(
˜̄yc − ˜̄xT

c b
)2

(4)

λ̂ is given by weighted least squares, and minimize differences between teachers that
can’t be explained by differences within teachers:

λ̂ = arg min
`

∑
j

(
1

∑c ĥc
+ σ̂2

µ

)−1 (
¯̄yj − ¯̄xT

j β̂− ¯̄xT
j `
)2

(5)

When there are no classroom-level shocks, β̂ and λ̂ coincide with the estimands from
a correlated random effects framework. When σ̂2

θ = 0, precisions hc are proportional to
the number of students in the class, so each observation is given equal weight. Equation 4
collapses to

β̂ = arg min
b

∑
i

(
yi − ¯̄yj(i) −

(
xi − ¯̄xj(i)

)T
b

)2

,
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and Equation 5 becomes

β̂+ λ̂ = arg min
c

∑
j

(
¯̄yj − ¯̄xT

j c
)2

.

These equations yield the same coefficients as running the regression (Chamberlain
(1984), Chamberlain (1982))

yi = xT
i β+ ¯̄xT

j(i)λ+ ε i.

3.1.1 Inference

Since this is quasi-likelihood, asymptotic inference is (conceptually) easy. The standard
errors in this paper use the robust “sandwich" standard errors, as well as reporting non-
robust standard errors based on the inverse of the Fisher information matrix. Appendix
D gives the first derivative of the likelihood function. Standard errors in this paper were
calculated using an analytic Fisher information matrix and numerical second derivative.

3.1.2 Bias correction to variance of teacher effects

The quantity of interest is
Var(µj) = Var

(
¯̄xT

j λ
)
+ σ2

µ

An obvious estimator is the sample analog:

V̂ar(µj|λ̂) =
1
n ∑

j

(
¯̄xT

j λ̂
)2
−
(

1
n ∑

j

¯̄xT
j λ̂

)2

+ σ̂2
µ

However, the sample analog is biased upwards. E
[
Var

(
¯̄xT

j λ̂|λ̂
)]

> E
[
Var

(
¯̄xT

j λ
)]

, for

a clear reason: estimation error in λ̂ will tend to make this quantity larger. Imagine that
λ = 0: λ̂ will not be zero, so there will appear to be some correlation between teacher effects
and covariates when there is not. Specifically, as shown in Appendix Proof 30, the sample
analog is biased upwards by

E
[
Var

(
¯̄xT

j λ̂|λ̂
)]
−Var

(
¯̄xTλ

)
= E

[(
¯̄xj −E ¯̄xj

)T Cov
(
λ̂
) (

¯̄xj −E ¯̄xj
)]

. (6)

Therefore, a bias-corrected estimator of the variance of teacher effects is

V̂ar
(
µj
)
=

predictable variance︷ ︸︸ ︷
1
n ∑

j

(
¯̄xT

j λ̂
)2
−
(

1
n ∑

j

¯̄xT
j λ̂

)2

+ σ̂2
µ︸︷︷︸

unpredictable variance

−

bias correction︷ ︸︸ ︷
1
n ∑

j

(
¯̄xT

j −
1
J ∑

k

¯̄xk

)T

Σ̂λ

(
¯̄xj −

1
J ∑

k

¯̄xk

)
.

(7)
where Σ̂λ is the asymptotic variance of λ̂.
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3.2 Empirical Bayes estimator from Kane and Staiger (2008)

Kane and Staiger (2008) develop a model that other value-added papers use as a baseline,
such as Chetty et al. (2014). As discussed in Section 2, Kane and Staiger (2008) experimentally
validated value-added scores. Their main specification not reject the hypothesis that the
scores were forecast unbiased, but they lacked power to rule out a moderate degree of bias,
and other specifications suggested that value-added scores could actually understate the
magnitude of teacher effects.

Guarino et al. (2014) and others note that this estimator is not consistent when teacher
effects are correlated with covariates. Section 3.2.4 shows that although the estimator is
consistent when teacher effects are not correlated with covariates – λ = 0 – this estimator is
asymptotically downward biased when λ 6= 0. 3.3 lays out a “modified-KS" estimator that
replaces the random teacher effects assumption with a fixed effects or correlated random
effects assumption, and consistently estimates the model laid out in Section 3.1 under only
a sorting on observables requirement.

3.2.1 Estimation

Kane and Staiger (2008)’s estimation procedure, like many other Empirical Bayes procedures
and like the maximum likelihood procedure above, proceeds in two phases. First, we
estimate the parameters of the model: β, σ2

µ, σ2
θ , and σ2

ε . Then we estimate each teacher’s
value of µj using the distribution described by the previously-estimated parameters as a
prior.

The first stage, estimation of parameters, itself comprises two steps. First, we estimate
β̂, then we use β̂ to generate residuals. Next, we use a “moment-matching" procedure to
estimate the variances σ2

µ, σ2
θ , and σ2

ε based on variances and covariances of residuals. In
more detail:

β̂ is estimated by regressing outcomes yi on covariates xi. This gives a consistent estimate
of β if and only if teacher effects are uncorrelated with covariates; otherwise, this estimate
will suffer from omitted variable bias:

β̂ = arg min
b

∑
i

(
yi − xT

i b
)2

= β+
(
∑xix

T
i

)−1
∑xi

(
µj(i) + νi

)
E
[
β̂
]
= β+

(
E
[
xix

T
i

])−1
E
[
xiµj(i)

]
The modified-KS estimator presented in the next section explores estimating β using

within-teacher variation, which corrects this omitted variable bias.
In order to estimate σ2

µ, use the following procedure. Let C(j) denote the set of classes
taught by teacher j. σ2

µ is the average product of mean residuals in pairs of classes taught by
the same teacher:

σ̂2
µ =

2
∑j |C(j)| (|C(j)| − 1) ∑

j
∑

c,c′∈C(j):c 6=c′

(
ȳc − x̄T

c β̂
) (

ȳc′ − x̄T
c′β̂
)

(8)
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To estimate σ̂2
θ and σ̂2

ε , we use similar “moment-matching" ideas. Since ε is responsible
for within-classroom variation in ỹ, σ2

ε is the mean variance of ỹi within a classroom:

σ̂2
ε =

1
Nstudents − Nclasses

∑
i

(
ỹi − x̃T

i β̂
)2

σ̂2
θ is chosen to explain the variance in yi that is not explained by µ, ε, or β̂:

σ̂2
θ = V̂ar(yi − xT

i β̂)− σ̂2
µ − σ̂2

ε .

3.2.2 Inference

We can reformulate this “moment-matching" procedure as the solution to a set of moment
functions. After setting up a moment function, we can estimate the asymptotic distribution
of the parameters either through the Bayesian Bootstrap, as in Chamberlain (2013), or
through the Generalized Method of Moments.

Denote the parameters η = (β, σ2
µ, σ2

ε , σ2
θ ). The moment function, which is at the teacher

level, is

gj(η) =


∑c∈C(j) ∑i∈I(c) xi(yi − xT

i β)

∑c∈C(j) ∑c′∈C(j),c′ 6=c

((
ȳc − x̄T

c β
) (

ȳc′ − x̄T
c′β
)
− σ2

µ

)
∑c∈C(j) ∑i∈I(c)

(
ỹi − x̃T

i β
)2 − σ2

ε ∑c∈C(j) (|I(c)| − 1)

∑c∈C(j) ∑i∈I(c)
(
yi − xT

i β
)2 −∑c∈C(j) |I(c)|

(
σ2

µ + σ2
θ + σ2

ε

)


To take the nth Bayesian Bootstrap draw, draw weights ωn ∈ RNteachers according to
ωn ∼ Dirichlet (1, 1, . . . , 1) (Rubin, 1981). Bootstrap draws of parameters become

β̂n =

(
∑

i
ωn

j(i)xixT
i

)−1

∑
i

ωn
j(i)xiyi

σ̂
2(n)
µ =

1
∑j ωn

j |C(j)| (|C(j)| − 1) ∑
j

∑
c∈C(j)

∑
c′∈C(j),c′ 6=c

ωn
j

(
ȳc − x̄T

c β̂
) (

ȳc′ − x̄T
c′β̂

n
)

σ̂
2(n)
ε =

1

∑j ωn
j

(
∑c∈C(j) (|I(c)| − 1)

) ∑
i

ωn
j(i)

(
ỹi − x̃T

i β̂n
)2

σ̂
2(n)
θ =

1

∑j ωn
j

(
∑c∈C(j) |I(c)|

) ∑
i

ωn
j(i)

(
yi − xT

i β̂n
)2
− σ̂

2(n)
µ − σ̂

2(n)
ε

3.2.3 Individual Teacher Effects

Although a teacher’s mean residuals are an unbiased estimate of µj, Kane and Staiger
use shrinkage to produce a best linear predictor of µj. First, generate the precision hc =

Var(ȳc − x̄T
c β)

−1 of each mean classroom residual; these are the same precisions used for
maximum likelihood in Equation 24. Then construct a precision-weighted mean using hc
and multiply it by shrinkage factor ρj to generate a mean squared error-minimizing estimate
of µj:

11



µ̂j = ρ̂j
∑c∈C(j) hc

(
ȳc − x̄T

c β̂
)

∑c∈C(j) hc

ρ̂j = arg min
ρ

E

(ρ
∑c:j(c)=j ĥc

(
ȳc − x̄T

c β̂
)

∑c∈C(j) hc
− µj

)2
 =

σ̂2
µ

σ̂2
µ +

1
∑c∈C(j) ĥc

(9)

Kane and Staiger note that when µ, θ, and ε are normally distributed, Equation 9 has a
Bayesian interpretation. The estimated variances σ̂2

µ, σ̂2
θ , and σ̂2

ε are treated as a prior and
observed test scores as data to create Empirical Bayes maximum a posteriori estimates of
teacher effects, which shrink mean residuals towards zero.

Equation 9 equals Equation 3, from maximum likelihood, when λ̂ = 0: Conditional on
parameter estimates, both procedures deliver the same estimated individual teacher effects.
However, even with the imposition of λ = 0, the procedures will generally not estimate
the same parameters. When estimating β̂, the Kane and Staiger procedure implicitly gives
each observation equal weight, while maximum likelihood uses precision weighting to put
relatively less weight on students in larger classrooms, due to the presence of classroom-level
shocks.

3.2.4 Inconsistency and bias under misspecification

Consistency and bias of σ̂2
µ

As discussed extensively in Guarino et al. (2014) and mentioned in Chetty et al. (2014), the
Kane and Staiger estimator will only be valid if there is no correlation between observable
student characteristics and teacher value-added. Their work demonstrates that β̂ will be
biased when estimated in a regression that omits teacher fixed effects; here I demonstrate
that omitted variable bias in β̂ leads to an asymptotic negative bias in V̂ar(µj). Intuitively,
variation in teacher effects that is correlated with student characteristics is incorrectly
attributed to the student characteristics. Equation 8 gives

E V̂ar(µj) =Var(µj)− 2
1

∑j |C(j)| |C(j)− 1| E

(β̂− β)T ∑
c∈C(j)

∑
c′∈C(j),c′ 6=c

x̄cµj


+

1
∑j |C(j)| |C(j)− 1| E

(β̂− β)T

 ∑
c∈C(j)

∑
c′∈C(j),c′ 6=c

x̄c x̄T
c′

 (β̂− β)



Appendix E shows that in the special case where each teacher teaches the same number
of classrooms and each classroom has the same number of students, the bias can be bounded:

− 3 ≤
Bias(V̂ar(µj))

∑j ¯̄xT
j µj

Nteachers

(
∑i xixT

i
Nstudents

−1
)

∑j ¯̄xjµj
Nteachers

≤ −1 (10)
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Equation 10 makes several facts apparent. The estimator is always negatively biased
even asymptotically, and bias is more severe when sorting is strong. This happens when λ
is large in magnitude.

3.3 Modified version of above estimator: Modified-KS

As discussed above, omitted variables bias parameter estimates in the Kane and Staiger
estimator. Chetty et al. (2014) suggest remedying this by including teacher fixed effects when
residualizing. That is, we obtain β̂ as the coefficient on xi in a regression of outcomes on xi
and teacher fixed effects 6. In a similar spirit, Guarino et al. (2014) discuss a similar issue
in the context of a slightly different value-added procedure from that of Kane and Staiger
(2008): the “mixed model" of Ballou et al. (2004), which differs from the model of Kane
and Staiger (2008) in that it does not explicitly model classroom effects (θc). Guarino et al.
(2014) explain that “estimators that include the teacher assignment indicators along with the
covariates in a multiple regression analysis" perform better. Using within-teacher variation
means that β̂ →p β, which in turn implies that V̂ar(µj) →p Var(µj). However, Section 3.5
shows that in the presence of errors in variables, when it is not possible to perfectly account
for sorting, both estimators’ estimates of β̂ will be affected by attenuation bias, but the bias
will be more severe for the Modified-KS estimator.

3.3.1 Inference

Inference is the same as in the Kane and Staiger procedure, except that the first component
of the moment condition changes to reflect that β̂ is now estimated off of within-teacher
variation:

ywithin
i ≡ yi −

1
∑c∈C(j) |I(c)|

∑
c∈C(j)

∑
i′∈I(c′)

yi′

xwithin
i ≡ xi −

1
∑c∈C(j) |I(c)|

∑
c∈C(j)

∑
i′∈I(c′)

xi′

gj(η) =


∑c∈C(j) ∑i∈I(c) xwithin

i

(
ywithin

i − xwithinT
i β̂

)
∑c∈C(j) ∑c′∈C(j),c′ 6=c

((
ȳc − x̄T

c β̂
) (

ȳc′ − x̄T
c′β̂
)
− σ̂2

µ

)
∑c∈C(j) ∑i∈I(c)

(
ỹi − x̃T

i β̂
)2 − σ̂2

ε ∑c∈C(j) (|I(c)| − 1)

∑c∈C(j) ∑i∈I(c)
(
yi − xT

i β̂
)2 −∑c∈C(j) |I(c)|

(
σ̂2

µ − σ̂2
θ − σ̂2

ε

)


3.4 Covariates without within-teacher variation

Analysis up to this point has assumed that it is possible to separately identify β and λ. ,
This model is not point identified when a column of xj is constant within each teacher. In

6Chetty et al. (2014) use an estimator much more complicated than the Kane and Staiger estimator; they
model the “drift" in teacher value-added across years. In this section, I use their modification to the estimation
of β̂ but do not study the rest of their model.
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that case, adding a constant to the corresponding component of β and subtracting it from
the corresponding component of λ would yield the same prediction of yj. For example, a
constant term could not be identified in this model, as it is impossible to distinguish the
level of teacher effects from the level of the other factors influencing student achievement.
The difficulty caused by a constant can be easily sidestepped by centering xi and yi around
zero, but other covariates that don’t vary within teacher cause more meaningful problems.
For example, if all teachers have a constant gender throughout the sample, it is not possible
to distinguish a world in which female teachers are better from one in which female teachers
are assigned better students. Imagine that all students obtain exactly the same test scores.
In such a case it would be tempting to claim that Var(µj) = 0, but it could be the case
that female teachers are much better than male teachers, and female teachers are assigned
students who are unobservably more difficult, with negative values of νi. 7

To see the effects of introducing covariates that do not vary within teacher, recall that
the original model is given by

yj = µj + xjβ + νj, νj ⊥ 1, xj

µj = ¯̄xT
j λ + µ̃j, µ̃j ⊥ 1, ¯̄xj

νj |= sj|xj, ¯̄xjsorting on observables

The predicted value of yj is

E∗
[
yj|xj, ¯̄xj, sj

]
= xjβ+ ¯̄xT

j λ

If there are K1 covariates that do not vary within teacher, the model is only identified
after fixing K1 scalars. To see this, let ` ∈ Rns be a vector of ones, and write xj as
xj = (x0

j , x1
j `, . . . , xK1

j `), where each column of x0
j ∈ Rns×(K−K1) has within-teacher variation.

Then the following equations are equally consistent with the data for all α ∈ RK1 :

E∗D
[
yj|µj, x0

j , x1
j , . . . , xK1

j , sj

]
= µj + x0

j β̃ +
K1

∑
k=1

αkxk
j γk

≡ µj + xjβ, βT = (β̃T, α1γ1, . . . , αK1 γK1)

E∗D
[
µj| ¯̄x0

j , x1
j , . . . , xK1

j , sj

]
= ¯̄x0T

j λ̃ +
K1

∑
k=1

(1− αk)xk
j γk

≡ ¯̄xT
j λ, λT = (λ̃T, (1− α1)γ1, . . . , (1− αK1)γK1) (11)

β̃, λ̃, and γ are all point identified, but β and λ are not without knowing α. Var
(
µj
)
,

the variance in teacher quality, depends on α:

7Randomly assigning students to teachers would identify that either βk or λk is zero for many attributes xk

by enforcing that there is no relationship between teacher quality and student attributes or between student
quality and teacher attributes. For example, the component of λ corresponding to students’ previous test
scores would be zero: there would be no association between teacher quality and student attributes. And the
component of β corresponding to teacher gender would be zero: There would be no relationship between
teacher gender and student quality.
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Var
(
µj
)
= Var

(
¯̄xT

j λ
)
+ σ2

µ

= Var

(
¯̄x0T

j λ̃ +
K1

∑
k=1

(1− αk)xk
j γk

)
+ σ2

µ

How can the previously described estimators accommodate uncertainty about α? In
the likelihood and modified-KS estimators, we can find a particular solution by setting
α = (0, . . . , 0)T, and then find a solution for any other value of α. Since the Kane and
Staiger estimator is only consistent when λ = (0, . . . , 0)T, it is nonsensical to ask how it can
handle uncertainty about α.

Among the remaining estimators, quasi-ML and modified-KS, quasi-ML is better able
to explore the implications of varying the sorting parameter α because it fully models the
sorting process. Quasi-ML can generate an estimate of V̂ar(µj) for any value of α, while
mod-KS can only give estimates for α = (0, . . . , 0) or the value that minimizes V̂ar(µj).
Asymptotically, both quasi-ML and modified-KS estimate the same lower bound of the
identified set (which is not bounded above).

3.4.1 Maximum (Quasi-)Likelihood

Using the likelihood model, we can obtain maximum likelihood estimates for β̂ and γ̂ for a
particular value of α, back out the point-identified parameters β̃, λ̃, and γ̃, and then find
V̂ar(µj) for a variety of values of α.

First, set the last K1 components of β̂ to zero, setting α = (0, . . . , 0), by attributing varia-
tion due to (x1

j , . . . , xK1
j ) to teacher quality. Since β̂ is identified off within-teacher variation,

this corresponds to saying coefficients on variables with no within-teacher variation are zero.
Now we can transform these estimands to those corresponding to any other value of α: Set
ˆ̃β to the first K− K1 components of β̂, ˆ̃λ to the first K− K1 components of λ̂, and γ̂ to the
last K1 components of λ̂.

Then we can find V̂ar(µj)(α) for any α as

V̂ar(µj) = σ̂2
µ + V̂ar

(
¯̄x0T

j λ̃ +
K1

∑
k=1

(1− αk)xk
j γk

)
.

By varying α, we can see that there are various values of Var(µj) that are consistent with
the point-identified parameters λ̃ and γ.
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V̂ar
(
µj
)MLE
α=(0,...,0) = σ̂2

µ + V̂ar
(

¯̄x0T
j λ̃ + x1T

j γ
)

V̂ar
(
µj
)MLE
α=(1,...,1) = σ̂2

µ + V̂ar
(

¯̄x0T
j λ̃
)

min
α

V̂ar
(
µj
)MLE
α

= σ2
µ + Var

 ¯̄x0T
j λ̃− x1T

j

(
∑
j′

x1
j′x

1T
j′

)−1(
∑
j′

x1
j′ ¯̄x

0T
j′ λ̃

)
→p σ2

µ + Var
(

¯̄x0T
j λ̃− E∗

[
¯̄x0T

j λ̃|x1
j , . . . , xK1

j

])
max

α
V̂ar

(
µj
)MLE

= ∞

First, in the case that α consists of all zeros, any variation that could potentially be
attributed to either teachers (λ) or students (β) is attributed to teachers. In the case that α
consists of all ones, this variation is attributed to students. The lowest estimate of the variance
of teacher effects comes from choosing each component of α so that ∑K1

k=1(1− αk)xk
j γk cancels

out as much of the variation in ¯̄x0T
j λ̃ as possible. And as α tends towards infinity or negative

infinity, the variance of teacher effects approaches infinity. This is similar to a situation in
which female teachers are vastly better than male teachers but are assigned students with
vastly lower values of νi. Restricting each component of α to lie in [0, 1] allows for only
“positive" sorting, in which factors that are positively correlated with student achievement
are also positively correlated with teacher quality.

3.4.2 Modified-KS

With the modified-KS estimator, like the quasi-ML estimator, we can find a particular
solution for β̂ by setting coefficients on covariates without within-teacher variation to 0.
This corresponds to assuming that each component of α is zero. Then ˆ̃β equals the first
K − K1 components of β̃. However, since the modified-KS estimator does not explicitly
model sorting, γ is unknown. Therefore, we cannot find V̂ar(µj) as a function of α, but
rather as a function of φ ≡ (α1γ1, . . . , αK1 γK1)

T, which is less easy to interpret.

V̂ar(µj)
Mod−KS
φ =

1
∑j |C(j)| (|C(j)| − 1) ∑

j
∑

c∈C(j)
∑

c′∈C(j),c′ 6=c

(
ȳc − x̄0T

c
ˆ̃β− x1T

j φ
)

(
ȳc′ − x̄0T

c′
ˆ̃β− x1T

j φ
)

Although we cannot estimate V̂ar(µj) as a function of α due to the presence of γ, we
can still plug in α = (0, . . . , 0)T and take the limit as at least one component of α goes to
infinity:
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V̂ar
(
µj
)mod−KS
φ=(0,...,0) =

1
∑j |C(j)| (|C(j)| − 1) ∑

j
∑

c,c′∈C(j),c 6=c′

(
ȳc − x̄0T

c
ˆ̃β
) (

ȳc′ − x̄0T
c′

ˆ̃β
)

→p plim
(

V̂ar(µj)
MLE
α=(0,...,0)T

)
max
φ

V̂ar
(
µj
)mod−KS

= ∞

The minimum value of V̂ar(µj) is given by setting each φ to minimize the sample
covariance between residuals in different classes:

arg min
φ

V̂ar(µj)φ =

∑
j

∑
c∈C(j)

∑
c′∈C(j),c′ 6=c

x0
j x0T

j

−1∑
j

∑
c∈C(j)

∑
c′∈C(j),c′ 6=c

x0
j

(
ȳc − x̄T

c
ˆ̃β
)

So asymptotically, modified-KS estimates the same lower bound as quasi-ML, despite
not fully modeling the sorting process:

min
φ

V̂ar(µj)→p Cov
(

ȳc − x̄0T
c β̃− E∗

[
ȳc − x̄0T

c β̃|x1
j

]
, ȳc′ − x̄0T

c′ β̃− E∗
[
ȳc′ − x̄0T

c′ β̃|x1
j

]∣∣∣ c, c′ ∈ C(j), c 6= c′
)

= plim
(

min
α

V̂ar(µj)
MLE
α

)

3.5 Errors in variables

In educational settings, it is likely that teachers are sorted to students on the basis of
unobservable characteristics like ability or parent involvement that are only roughly captured
by controls. To investigate how errors in variables affects estimates, this section studies the
implications of sorting on student ability that is only approximately captured by test scores.

Posit that ability is a mean-zero scalar. yj ∈ Rns , zj ∈ Rns , xj ∈ Rns , and β, λ, ¯̄xj, and ¯̄zj
are scalars. The data is generated by

yj = µj + zjβ + νj

µj = ¯̄zjλ + µ̃j

with the usual orthogonality restrictions. We do not observe zj, only xj. Each component
xi of xj is generated with independent measurement error: xi = zi + σε i, where ε i has mean
zero and variance one. If we control for xj instead of zj, how does this affect our estimates
of Var(µj)?

The Kane and Staiger estimator estimates

β̂KS →p
Cov(yi, xi)

Var(xi)

=
Cov( ¯̄zj(i), zi)λ + Var(zi)β

Var(xi)

=
Var(zi)

Var(xi)
β +

Var( ¯̄zj)

Var( ¯̄xj)
λ
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When β̂ and λ̂ have the same sign, as seems likely in an educational context, then
without errors in variables β̂ will be biased away from zero. Sorting on observables can
push β̂ towards zero, a case of two wrongs making a right. Without errors in variables,
Var(µj) was biased downwards; now its bias cannot be signed.

The modified-KS estimator uses within-teacher variation:

β̂→p
Var(zdemeaned

i )

Var(xdemeaned
i )

β

3.5.1 Calibration

We can calibrate σ and other parameters needed to assess the impact of errors in variables
using data from New York City, described in more detail below. The test-retest reliability of
standardized tests is approximately 0.8. When the variance of test scores xi is normalized to
1, this implies that σ2 = .2. Letting “classrooms" c be teacher-year-grade units, we can also
back out that latent ability is the sum of a teacher-level component with variance 0.34, a
teacher-year-grade component with variance 0.04, and an individual-level component with
variance 0.42.

In other words, using notation consistent with that previously used to describe teacher-
level, and classroom-level variables,

zi = ¯̄zj(i) + ˜̄zc(i) + z̃i

Var( ¯̄zj) = 0.34

Var( ˜̄zc) = 0.04
Var(z̃i) = 0.42

xi = zi + σε i

σ2 = 0.2

Therefore, in the Kane and Staiger estimator, assuming λ = 0,

lim
Nteachers→∞,Nstudents per teacher→∞

β̂KS = 0.8β

lim
Nteachers→∞,Nstudents per teacher→∞

β̂mod−KS =
Var(zi)−Var( ¯̄zj)

Var(xi)−Var( ¯̄zj)
β

= 0.70β

Since students with the same teacher tend to be similar in ability, using the modified
Kane and Staiger estimator instead of the Kane and Staiger estimator substantially worsens
attenuation bias.
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4 Monte Carlo Experiments

4.1 Data and real results

In this section, I use a dataset of math teachers in New York City to estimate the variance of
math teacher effects on math test scores. The data runs from 2006 to 2015 and includes over
10 million student-test score observations. In accordance with previous teacher value-added
literature, I control for demographic information and student achievement: gender, whether
the student is disabled, whether the student is in a specialized class for English language
learners, free or reduced price lunch status, lagged attendance, and lagged test scores. In
order to always control for lagged test scores, third graders and students who recently
moved to the district are not included. Summary statistics for the whole data are given in
Table 3.

Table 3: Summary statistics, New York City public schools.

Mean St. Dev Min Max Missing

Grade 5.65 3.94 -1 12 0.07%
Year 2009.39 3.11 2005 2015 0%
Disabled 0.15 0.36 0 1 0%
Female 0.49 0.50 0 1 0%
English Language Learner 0.13 0.34 0 1 0%
Free Lunch 0.77 0.42 0 1 0%
Days absent 16.19 22.16 0 187 6.39%
Days present 154.88 35.20 0 329 6.39%
Days Absent Lag (Z-Score) 0.03 0.97 -16.45 1.40 28.17%
Math Score (Z-Score) 0.01 1.00 -10.00 3.96 60.38%
Math score lag (Z-Score) 0.00 0.99 -10.00 3.96 66.3%
ELA Score (Z-Score) 0.00 1.00 -11.10 7.76 61.17%
ELA Score Lag (Z-Score) -0.00 0.99 -11.10 7.76 67.14%
4-Year Graduation 0.59 0.49 0 1 70.32%
4-Year Graduation, Regents Diploma 0.35 0.48 0 1 68.24%
4-Year Graduation, Advanced Regents Diploma 0.15 0.36 0 1 67.49%
N = 10,000,453

I do not, however, use all teachers for these empirical exercises. In violation of the
homoskedasticity assumption, teachers who appear in the data in more years are lower-
variance. Figure 1 shows results from partitioning the data by the number of years each
teacher appears in the data, plotted in solid lines in the first panel, and on the whole data,
plotted in solid lines in the second panel. Although modified-KS and the likelihood-based
estimators give very similar answers when the data is partitioned, they do not give similar
answers on the whole data, because they differ in how much more weight they give to
teachers who appear in the data more frequently. Modified-KS gives lower estimates because
it gives more weight to teachers who appear often in the data.

In order to ensure that the estimates are comparable, all further analysis proceeds on
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Figure 1: V̂ar(µj): Estimates from partitioning the data by number of years taught, in solid lines, and from
whole data, in dotted horizontal lines.
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Table 4: Summary statistics, New York City public schools: students of math teachers who appear in the data
for three years.

Mean St. Dev Min Max Missing

Grade 5.69 1.41 4 8 0%
Year 2008.87 2.00 2006 2013 0%
Disabled 0.20 0.40 0 1 0%
Female 0.49 0.50 0 1 0%
English Language Learner 0.13 0.34 0 1 0%
Free Lunch 0.84 0.37 0 1 0%
Days absent 11.96 12.28 0 178 0%
Days present 169.49 13.20 2 186 0%
Days Absent Lag (Z-Score) 0.01 0.93 -12.70 1.08 2.79%
Math Score (Z-Score) -0.04 0.99 -6.35 3.89 0%
Math score lag (Z-Score) -0.05 1.00 -10.00 3.96 5.2%
ELA Score (Z-Score) -0.05 1.00 -10.48 7.76 0%
ELA Score Lag (Z-Score) -0.05 0.99 -11.10 6.96 8.02%
4-Year Graduation 0.66 0.48 0 1 66.06%
4-Year Grad, Reg 0.44 0.50 0 1 66.06%
4-Year Grad, Adv Reg 0.17 0.38 0 1 66.05%
N = 225,320

Table 5: Estimates of V̂ar(µj) for the effects of math teachers on math scores, for teachers who can be linked to
students.

σ̂2
µ V̂ar( ¯̄xT

j λ) V̂ar(µj) CI CI (Robust)

Kane and Staiger 3.46% [3.46%, 3.47%]
Mod-KS 4.52% [4.52%, 4.53%]

MLE 3.15% 2.24% 5.39% [5.39%, 5.40%] [5.31%, 5.47%]
Bias-Corrected MLE 3.15% 2.22% 5.37%

Bias-Corrected MLE (Robust) 3.15% 0.00% 3.15%
Notes.The BC-MLE estimate shows estimates from bias-corrected maximum likelihood using the inverse Fisher
information matrix to estimate the variance of λ̂, which is used to estimate a bias correction; the
“sandwich-based" version uses a robust estimator of the variance of λ̂ to create the bias correction.
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Table 6: Estimates of V̂ar(µj) for the effects of math teachers on math scores, for teachers who appear in the
data in exactly three years and can be linked to students.

σ̂2
µ V̂ar( ¯̄xT

j λ) V̂ar(µj) CI CI (Robust)

Kane and Staiger 3.75% [3.75%, 3.76%]
Mod-KS 5.24% [5.24%, 5.25%]

MLE 3.16% 2.25% 5.42% [5.41%, 5.42%] [5.34%, 5.50%]
Bias-Corrected MLE 3.16% 2.20% 5.36%

Bias-Corrected MLE (Robust) 3.16% 0.02% 3.19%
Notes.The BC-MLE estimate shows estimates from bias-corrected maximum likelihood using the inverse Fisher
information matrix to estimate the variance of λ̂, which is used to estimate a bias correction; the
“sandwich-based" version uses a robust estimator of the variance of λ̂ to create the bias correction.

a sample of teachers who appear in the data in three separate years. This leaves 2,922
teachers out of an initial sample of 25,508. Table 4 gives summary statistics for this reduced
dataset. Table 6 shows estimates of V̂ar(µj) for each estimator for the effects of math
teachers on math scores, among teachers who appear in the data in three years. The
maximum likelihood estimator has confidence intervals corresponding to both non-robust
(inverse Fisher information) and robust to misspecification (sandwich) estimates. Because
the bias-corrected maximum likelihood estimator depends on an estimate of the asymptotic
variance of λ̂, there are two possible bias corrections available. The Modified-Kane and
Staiger, MLE, and bias-corrected MLE estimators give very similar answers after restricting
to teachers who teach in only three years, all between 5.24% and 5.42%. However, the Kane
and Staiger estimator gives a much lower answer, 3.75%. This is not surprising, since the
Kane and Staiger estimator is not consistent under the baseline model. More surprisingly,
the bias-corrected likelihood estimate that relies on a robust estimate of the variance of λ̂
gives a much smaller answer, because it estimates a much larger variance of λ̂. Closed-form
formulas for confidence intervals are not available for the bias-corrected estimates, since the
bias correction depends on the asymptotic variance of λ̂.

4.2 Subsampling Experiments

To assess the validity of confidence intervals based on asymptotic approximation, I follow
Buchinsky (1995) in treating estimates V̂ar(µj) from the whole sample as the truth, drawing
small subsamples b of the data, constructing a nominally 95% confidence interval CI(b) for
V̂ar(µj)(b) based on the asymptotic distribution of the estimator, and checking how often
V̂ar(µj) lies in the confidence interval. For example, the empirical coverage of estimates
from the Kane and Staiger estimator is

̂coverageKS =
1

Ndraws

Ndraws

∑
b=1

1
(

V̂ar(µj)
KS ∈ CIKS

(b)

)
,

with empirical coverage probabilities constructed similarly for the other estimators: Modified-
KS, and MLE with both robust and non-robust confidence intervals.

22



Number of teachers
200 500

KS 92.0% 96.2%
Mod-KS 88.6% 94.7%
MLE 58.5% 71.2%
MLE (Robust) 100.0% 100.0%

Table 7: Empirical coverage probabilities of confidence intervals based on asymptotic approximations over
1000 draws.

Table 7 gives estimated empirical coverage probabilities based on 1000 subsamples of 200
teachers and 1000 subsamples of 500 teachers. Both the KS and modified-KS estimators have
confidence intervals that are anti-conservative with 200 teachers but approximately correct
with 500 teachers. The quasi-ML estimator using non-robust standard errors produces
confidence intervals with very poor coverage. It may struggle because it estimates more
parameters than the moment-matching estimators. The robust standard errors, on the other
hand, are too large.

In addition to evaluating confidence intervals, comparing the distribution of subsampled
estimates V̂ar(µj)(b) to the “true" answer V̂ar(µj) allows for empirical estimates of the bias
and variance of each estimator, as well as helping visualize the distribution. Figure 2
histograms draws of V̂ar(µj)(b) from each estimator.
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Figure 2: Histograms of estimates of V̂ar(µj) from subsamples.

When discussing how estimates from small subsamples relate to the “true" answer from
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Figure 3: Bias and variance of each estimator based on subsampling experiments.

Notes. At left, bias for each estimator, taking estimate from the whole sample as the truth; at right,
decomposition of mean squared error into bias squared and variance. At top, defining the “truth" for each
estimator as that estimator’s estimate from the full sample of all teachers who appear in three years. At bottom,
defining the truth as the average estimate from Mod-KS, MLE, and bias-corrected MLE.

the full data, there are two ways of defining the “true" answer: Either the truth is the
corresponding full-sample estimate for each estimator, or it is between the “reasonable"
estimates of 5.24% to 5.42% from the three consistent estimators that agree with each other.
I consider both cases. The top left panel of of Figure 3 shows the “bias" of subsample
estimates of V̂ar(µj), where bias is the mean subsample estimate minus the estimate from
the whole sample for that estimator. Even though the Kane and Staiger estimator gives the
lowest estimates, it has a small upward “bias" here because it is, on average, close to its
value on the whole sample. But the bottom left panel takes the true value to be the mean of
the estimates from Modified-KS, MLE, and Bias-Corrected MLE, in which case the Kane and
Staiger estimator does much worse. The right panels repeat this exercise with bias squared
and variance, which add up to each estimator’s mean squared error. It is apparent that the
modified-KS is more variable than the Kane and Staiger estimator, but Kane and Staiger’s
bias makes it unappealing. The likelihood-based estimators perform better in terms of both
bias and variance.

5 Conclusion

Each of the estimators presented has pros and cons for estimating the distribution of value-
added. More work is needed to understand which estimator is best for estimating individual
effects, especially for a practitioner who cares only about ranking teachers and not about
the magnitude of each teacher’s score. It could be the case that a simple method works best:
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Previous studies have found that coefficients from fixed-effects regressions are very highly
correlated with shrinkage value-added estimates (Kane et al., 2013b). On the other hand,
recent work suggests that machine learning methods perform well (Chalfin et al. (2016),
Gramacy et al. (2016)). However, if a cardinal interpretation of value-added scores is desired,
it becomes important to recover the right parameters in order to impose the proper degree
of shrinkage.

For estimating the parameters of the distribution of value-added, the Kane and Staiger
and modified Kane and Staiger estimators are the least computationally intensive; with N
observations and K covariates, both are O(NK2). The most time-intensive step is running
a least-squares regression. This algorithm then works with residuals, performing several
quick O(N) computations. The Kane and Staiger estimator comes with the most stringent
identification requirements; it is only consistent when teachers are as good as randomly
assigned. The modified-KS estimator is slower in practice since it requires using a within
estimator, which makes sparse covariates dense.

Maximum quasi-likelihood is less computationally efficient but appears in subsampling
experiments to be more statistically efficient. It is biased upwards, but the bias appears
to be quantitatively small in realistic scenarios. A bias correction is available but is not
recommended unless an underestimate is strongly preferred to an overestimate, as it
overshoots and increases variance with the large number of covariates found in a realistic
education example. Maximum likelihood estimation is significantly more time-intensive.
Estimation iterates over variances (σ2

µ, σ2
θ , σ2

ε ) and coefficients (β, λ). Estimating β̂ requires
an O(NK2) regression using within-teacher variation at every iteration, and since variances
have no closed-form solution, they must be numerically optimized..

When the model is correctly specified, both modified-KS and quasi-ML are appealing
choices. However, two complications to the model may influence the choice of estimator:
sorting on variables measured with error, and covariates that do not vary within teacher.

When teachers are sorted to students on variables measured with error, modified-KS
estimates is more affected by attenuation bias than Kane and Staiger estimates. If the
researcher has reason to believe the more stringent identification criteria of Kane and Staiger
– λ = 0 – then the Kane and Staiger estimator will perform better than the modified-KS
estimator.

When there are covariates that do not vary within teacher, such as gender or where
the teacher went to college, V̂ar(µj) is not point identified without further assumptions.
Although both the modified-KS and quasi-ML estimators give similar estimates when
all covariates vary within teacher, quasi-ML is better able to explore the implications of
varying the sorting parameter α because it fully models the sorting process. Quasi-ML can
generate an estimate of V̂ar(µj) for α = (0, . . . , 0)T, α = (1, . . . , 1)T, and the value of α that
minimizes V̂ar(µj), while mod-KS can only give estimates for α = (0, . . . , 0) or the value
that minimizes V̂ar(µj). Furthermore, in asymptopia quasi-ML gives a higher lower bound
than mod-KS.
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A Maximum Quasi-Likelihood Robustly Estimates Variances

If we assume the model of Section 3.1, in which data is drawn from some distribution
D and we do not assume a functional form, then quasi-likelihood based on normality
delivers consistent estimates of the parameters η =

(
σ2

µ, σ2
θ , σ2

ε ,β,λ
)

, with true value

η∗ =
(

σ2∗
µ , σ2∗

θ , σ2∗
ε ,β∗,λ∗

)
. Consider the normal model

yj|xj, ¯̄xj ∼ N
(

xjβ+ ¯̄xT
j λ, Σ(η, sj)

)
,

with the corresponding likelihood function f
(
yj|xj, ¯̄xj, sj; η

)
.

Lemma A.1.
η∗ = ηF ≡ arg max

η
ED log f

(
yj|xj, ¯̄xj, sj; η

)
(12)

Proof.

ED log f (yj|xj, ¯̄xj, sj; η) =− 1
2

log detΣ(η, sj)

− 1
2

ED

[(
yj − xjβ− ¯̄xT

j λ
)T

Σ(η, sj)
−1
(
yj − xjβ− ¯̄xT

j λ
)
|xj, ¯̄xj, sj

]
(13)

Since β corresponds to an unrestricted linear predictor, the values of β and λ that
maximize Equation 13 do not depend on Σ, so

arg max
β,λ

ED log f (yj|xj, ¯̄xj; σ2
µ, σ2

θ , σ2
ε ,β,λ) = β∗,λ∗
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After plugging in β = β∗ and λ = λ∗, we can rewrite Equation 13 as

ED log f (yj|xj, ¯̄xj; σ2
µ, σ2

θ , σ2
ε ,β∗,λ∗)

=− 1
2

log detΣ(σ2
µ, σ2

θ , σ2
ε , sj)

− 1
2

ED

[(
yj − xjβ

∗ − ¯̄xT
j λ
∗
)T

Σ(σ2
µ, σ2

θ , σ2
ε , sj)

−1
(
yj − xjβ

∗ − ¯̄xT
j λ
∗
)
|xj, ¯̄xj, sj

]
=− 1

2
log detΣ(σ2

µ, σ2
θ , σ2

ε , sj)

− 1
2

ED

[
trace

(
yj − xjβ− ¯̄xT

j λ
)T

Σ(σ2
µ, σ2

θ , σ2
ε , sj)

−1
(
yj − xjβ

∗ − ¯̄xT
j λ
∗
)
|xj, ¯̄xj, sj

]
=− 1

2
log detΣ(σ2

µ, σ2
θ , σ2

ε , sj)

− 1
2

trace
(

Σ(σ2
µ, σ2

θ , σ2
ε , sj)

−1ED

[(
yj − xjβ

∗ − ¯̄xT
j λ
∗
)T (

yj − xjβ
∗ − ¯̄xT

j λ
∗
)])

= −1
2

log detΣ(σ2
µ, σ2

θ , σ2
ε , sj)−

1
2

trace
(

Σ(σ2
µ, σ2

θ , σ2
ε , sj)

−1Σ(η∗, sj)
)

≡ −1
2

log detΣ(η, sj)−
1
2

trace
(

Σ(η, sj)
−1Σ(η∗, sj)

)

Therefore,

arg max
σ2

µ,σ2
θ ,σ2

ε

ED log f (yj|xj, ¯̄xj; σ2
µ, σ2

θ , σ2
ε ,β,λ)

= arg max
σ2

µ,σ2
θ ,σ2

ε

− log detΣ(σ2
µ, σ2

θ , σ2
ε , sj)− trace

(
Σ(σ2

µ, σ2
θ , σ2

ε , sj)
−1Σ(η∗, sj

)
= arg max

σ2
µ,σ2

θ ,σ2
ε

log det
(

Σ(σ2
µ, σ2

θ , σ2
ε , sj)

−1Σ(η∗, sj)
)
− trace

(
Σ(σ2

µ, σ2
θ , σ2

ε , sj)
−1Σ(η∗, sj

)
Let Σ(σ2

µ, σ2
θ , σ2

ε , sj)
1/2 be the symmetric, positive definite square root of the symmetric,

positive definite matrix Σ(σ2
µ, σ2

θ , σ2
ε , xj), and let {ei} be the eigenvalues of

Σ(η, sj)
1/2Σ(σ2

µ, σ2
θ , σ2

ε , sj)
−1Σ(η, sj)

1/2. Since that matrix is positive definite, all of its eigen-
values are positive.

log det
(

Σ(σ2
µ, σ2

θ , σ2
ε , sj)

−1Σ(η∗, sj)
)
− trace

(
Σ(σ2

µ, σ2
θ , σ2

ε , sj)
−1Σ(η∗, sj

)
= log det

(
Σ(η∗, sj)

1/2Σ(σ2
µ, σ2

θ , σ2
ε , sj)

−1Σ(η∗, sj)
1/2
)

(14)

− trace
(

Σ(η∗, sj)
1/2Σ(σ2

µ, σ2
θ , σ2

ε , sj)
−1Σ(η∗, sj)

1/2
)

= log Πiei −∑
i

ei

=∑
i
(log(ei)− ei) (15)
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Equation 14 is maximized when all ei = 1, which occurs when Σ(σ2
µ, σ2

θ , σ2
ε , sj) = Σ(η∗, sj).

As long as the teacher teaches multiple classes and at least one class has multiple students,
the only value that solves this equation is ηF = η∗.

B Closed-Form Likelihood and Intuitive Parameter Estimates

This section derives a closed-form solution for the likelihood. Subsection B.1 translates
Equation 12, which is in terms of a determinant and an inverse of Σ, into an equation that
contains integrals but no determinant or inverse. Subsection B.2 solves these integrals to
give a tractable formula for the likelihood.

B.1 Matrices to Integrals

We can find a closed-form solution for the likelihood, without inverses, determinants, or
integrals, by constructing a sum of independent variables that has the same distribution
as yj. For each classroom c, define `c, a vector of ones with length equal to the number
of students in classroom c, and for each teacher j number her classrooms c = 1, 2, . . . , C.
Define the following independent random variables:

µj ∼ N
(

¯̄xT
j λ, σ2

µ

)
θc ∼ N(0, σ2

θ )

εj ∼ N
(

xT
j β, Iσ2

ε

)
(16)

Stack the θc corresponding to each classroom into a vector Θj. The covariance of Θj is
block diagonal, with diagonal blocks corresponding to each classroom:

Θj =


θ1`1
θ2`2

...
θC`C

 Var(Θj) = σ2
θ B B =


`1`

T
1 0 0 0

0 `2`T
2 0 0

0 0
. . . 0

0 0 0 `C`
T
C

 .

Summing the random variables of Equation 16 gives a new random variable that has the
same distribution as yj:

µj + Θj + εj ∼ N
(

xT
j β+ ¯̄xT

j λ, ``Tσ2
µ + Bσ2

θ + Iσ2
ε

)
``Tσ2

µ + Bσ2
θ + Iσ2

ε = Σj(η)

µj + Θj + εj
D
= yj

Intuitively, µj affects all students taught by the same teacher, each θc affects each student
in classroom c and is independent from all other θk, and each component of εj independently
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affects one student. Now we can use the distribution of µj + Θj + εj to come up with an
alternative but equivalent description of the likelihood:

fyj(yj|η) = fµj+Θj+εj(yj|η)

=
∫

µ
f (µ) fΘj+εj(yj − µ)dµ

=
∫

µ
φ
(

µ; σ2
µ

)
fΘj+εj(yj − µ)dµ (17)

Since the covariance matrix of Θj + εj is block diagonal, we can write its probability
density function as a product over the blocks, which correspond to classes:

f
(
Θj + εj

)
= Πc f (`cθc + εc) (18)

`cθc + εc ∼ N
(

xT
c β, `c`

T
c σ2

θ + Iσ2
ε

)
f`cθc+εc(yc − µ) =

∫
θ

f (θ) fεc(yc − µ− θ)dθ

=
∫

θ
φ(θ; σ2

θ )Πi∈I(c)φ
(

yi − xT
i β− µ− θ; σ2

ε

)
dθ

fΘj+εj(yj − µ) = Πc

∫
θ

φ(θ; σ2
θ )Πi∈I(c)φ

(
yi − xT

i β− µ− θ; σ2
ε

)
dθ (19)

Plugging Equation 18 into Equation 17, we get a complete formula for the likelihood:

f
(
yj|xj, ¯̄xj, sj; θ,β,λ, α

)
=
∫

µ
φ
(

µ− ¯̄xT
j λ; σ2

µ

)
Πc

(∫
θ

φ (θ; σθ)Πiφ
(

yi − xT
i β− µ− θ; σε

)
dθ

)
dµ (20)

B.2 Solving the Integrals

This section derives a closed-form solution for the likelihood using Equation 20 as a starting
point. The quantities that fall out of these equations are generally means or deviations from
means, using precision weights.

Define classroom-level means and within-classroom demeaned values for y, and ana-
logues for x:

ȳc ≡
1
|I(c)| ∑

i∈I(c)
yi (21)

ỹi ≡ yi − ȳc(i) (22)

(23)

The precision of the mean classroom error is

1
hc
≡ Var

(
ȳc − x̄cβ− µj(c)

)
= σ2

θ + σ2
ε /nc. (24)
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Define precision-weighted teacher-level means and within-teacher demeaned values for
y, and analogues for x:

¯̄yj ≡
∑c:j(c)=j hcȳc

∑c:j(c)=j hc

˜̄yc ≡ ȳc − ¯̄yj(c) (25)

Note that, where φ is the multivariate normal probability density function, and nc is the
number of students in classroom c,

Πi∈I(c)φ
(
yi; σ2

ε

)
∝ σ2−nc

ε φ

(√
∑

i
ỹ2

i , σ2

)
φ
(
ȳc, σ2

ε /nc
)

. (26)

Equation 26 implies

Πi∈I(c)φ(yi − xT
i β− µ− θ; σε) ∝ σ2−nc

ε φ

√ ∑
i∈I(c)

(
ỹi − x̃T

i β
)2; σ2

ε

 φ
(

ȳc − x̄T
c β− µ− θ; σ2

ε /nc

)
,

Also note that the product of the densities of two normal distributions, integrated over a
translation of their means, is∫

µ
φ(µ− x1; σ1)φ(µ− x2, σ2)dµ = φ

(
x1 − x2;

√
σ2

1 + σ2
2

)
. (27)

Applying Equation 27,∫
θ

φ (θ; σθ)Πiφ
(

yi − xT
i β− µ− θ; σε

)
dθ

= σ2−nc
ε φ

√∑
i

(
ỹi − x̃T

i β
)2; σ2

ε

 ∫
θ

φ (θ; σθ) φ
(

ȳc − x̄T
c β− µ− θ; σ2

ε /n
)

dθ

= σ2−nc
ε φ

√∑
i

(
ỹi − x̃T

i β
)2; σ2

ε

 φ
(

ȳc − x̄T
c β− µ; σ2

ϑ + σ2
ε /nc

)

= σ2−nc
ε φ

√∑
i

(
ỹi − x̃T

i β
)2; σ2

ε

 φ
(

ȳc − x̄T
c β− µ; 1/hc

)
.

Note the product of n normal densities with different means and variances:

Πcφ(µc; σc) =

√
1

∑c 1/σ2
c

φ
(
µ̃, Iσ2) φ

(
µ̄,

1
∑c 1/σ2

c

)

≡
√

1
∑c hc

φ (µ̃, I(1/h)) φ

(
µ̄,

1
∑c hc

)
(28)
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Applying Equation 28,

Πc

(
ȳc − x̄T

c β− µ; 1/hc

)
=

1√
∑c hc

φ
(

˜̄yj − ˜̄xT
j β, I(1/hj)

)
φ

(
¯̄yj − ¯̄xT

j β− µ,
1

∑c hc

)
Therefore,

Πc

∫
θ

φ (θ; σθ)Πiφ(yi − xT
i β− µ− θ; σε)dθ =σ1+Nclasses−Nstudents

ε

√
Πchc

∑c hc
exp

(
−1

2 ∑
c

(
˜̄y− ˜̄xTβ

)2
hc

)

φ

(√
∑

i
(ỹi − x̃Tβ)

2; σ2
ε

)
φ

(
¯̄yj − ¯̄xT

j β− µ;
1

∑c hc

)
Applying Equation 27 again,∫

µ
φ
(

µ− ¯̄xT
j λ; σ2

µ

)
φ

(
¯̄yj − ¯̄xT

j β− µ,
1

∑c hc

)
dµ = φ

(
¯̄yj − ¯̄xT

j (β+ λ); σ2
µ +

1
∑c hc

)
Equation 20 finally reduces to

f
(
yj|xj, ¯̄xj, sj; σ2

µ, σ2
θ , σ2

ε ,β,λ
)
=σ1+Nclasses−Nstudents

ε

√
Πchc

∑c hc
exp

(
−1

2 ∑
c

(
˜̄yc − ˜̄xT

c β
)2

hc

)

φ

√∑
i

(
ỹi − x̃T

i β
)2; σ2

ε

 φ

(
¯̄yj − ¯̄xT

j (β+ λ); σ2
µ +

1
∑c hc

)
The log-likelihood is

log f
(
yj|xj, ¯̄xj, sj; θ,β,λ

)
= (1 + Nclasses − Nstudents) log σε +

1
2 ∑

c
log(hc)−

1
2

log

(
∑

c
hc

)
− 1

2 ∑
c

(
˜̄yc − ˜̄xT

c β
)2

hc

+ log φ

√∑
i

(
ỹi − x̃T

i β
)2, σ2

ε

+ log φ

(
¯̄yj − ¯̄xT

j (β+ λ), σ2
µ +

1
∑c hc

)

= (1 + Nclasses − Nstudents) log σε +
1
2 ∑

c
log(hc)−

1
2

log

(
∑

c
hc

)
− 1

2 ∑
c

(
˜̄yc − ˜̄xT

c β
)2

hc

− log σε −
1

2σ2
ε

∑
i

(
ỹi − x̃T

i β
)2
− 1

2
log
(

σ2
µ +

1
∑c hc

)
− 1

2
(

σ2
µ +

1
∑c hc

) ( ¯̄yj − ¯̄xT
j (β+ λ)

)2

= (Nclasses − Nstudents) log σε +
1
2 ∑

c
log(hc)−

1
2

log

(
∑

c
hc

)
− 1

2 ∑
c

(
˜̄yc − ˜̄xT

c β
)2

hc

− 1
2σ2

ε
∑

i

(
ỹi − x̃T

i β
)2
− 1

2
log
(

σ2
µ +

1
∑c hc

)
− 1

2
(

σ2
µ +

1
∑c hc

) ( ¯̄yj − ¯̄xT
j (β+ λ)

)2
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The log-likelihood for all teachers is

∑
j

log f
(
yj|xj, ¯̄xj, sj; σ2

µ, σ2
θ , σ2

ε ,β,λ
)

= (Nclasses − Nstudents) log σε +
1
2 ∑

c
log hc −

1
2 ∑

j
log

 ∑
c∈C(j)

hc

− 1
2 ∑

c

(
˜̄yc − ˜̄xT

c β
)2

hc

− 1
2σ2

ε
∑

i

(
ỹi − x̃T

i β
)2
− 1

2 ∑
j

log

(
σ2

µ +
1

∑c∈C(j) hc

)
−∑

j

1

2
(

σ2
µ +

1
∑c∈C(j) hc

) ( ¯̄yj − ¯̄xT
j (β+ λ)

)2
.

If we wish to express the likelihood without integrating out teacher effects, we get

f
(
yj|xj, sj; η

)
=g (η)∫

µ
φ
(

µ− ¯̄xT
j λ; σ2

µ

)
φ

(
¯̄yj − ¯̄xT

j β− µ;
1

∑c hc

)
dµ (29)

C Maximum Likelihood Bias Correction

Proof of Equation 6:

E
[
Var

(
¯̄xTλ̂|λ̂

)]
−Var

(
¯̄xTλ

)
= Var

(
¯̄xTλ̂

)
−Var

(
E
[

¯̄xTλ̂|λ̂
])
−Var

(
¯̄xTλ

)
= Var

(
¯̄xTλ̂

)
−Var

(
E
[

¯̄xT
]
λ̂
)
−Var

(
¯̄xTλ

)
= E

[
Var

(
¯̄xTλ̂| ¯̄x

)]
+ Var

(
E
[

¯̄xTλ̂| ¯̄x
])
−E [ ¯̄x]T Cov(λ̂)E [ ¯̄x]−Var

(
¯̄xTλ

)
= E

[
¯̄xT Cov

(
λ̂
)

¯̄x
]
−E [ ¯̄x]T Cov(λ̂)E [ ¯̄x]

= E
[
( ¯̄x−E ¯̄x)T Cov

(
λ̂
)
( ¯̄x−E ¯̄x)

]
. (30)

D Optimization,Gradient

This equation can easily be optimized numerically. The software package available at
http://www.github.com/esantorella/tva iterates between estimating β̂ and λ̂, which have
closed-form solutions in terms of other parameters, and estimating σ2

µ, σ2
θ , and σ2

ε using
L-BFGS.

D.1 Gradient

For compactness, let ηj ≡ 1
∑c∈C(j) hc

.
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∂LL
∂σ2

µ

=
1
2 ∑

j

1(
σ2

µ + ηj

)2

((
¯̄yj − ¯̄xT

j (β+ λ)
)2
−
(

σ2
µ + ηj

))
∂LL
∂σ2

θ

=
1
2 ∑

c

∂hc

∂σ2
θ

(
1
hc
−
(

˜̄yc − ˜̄xT
c β
)2
)

+
1
2 ∑

j

 ∑
c∈C(j)

∂hc

∂σ2
θ

− 1
1/σ2

µ + 1/ηj
−
(

ηj

σ2
µ + ηj

)2 (
¯̄yj − ¯̄xT

j (β+ λ)
)2


−∑

j

1
∑c∈C(j) hc

σ2
µ +

1
∑c∈C(j) hc

(
¯̄yj − ¯̄xT

j (β+ λ)
)( ¯̄yj − ¯̄xT

j (β + λ)
)

∑
c∈C(j)

h2
c − ∑

c∈C(j)
h2

c(ȳc − x̄T
c (β + λ))


∂LL
∂σ2

ε

=
1
2 ∑

c

∂hc

∂σ2
ε

(
1
hc
−
(

˜̄yc − ˜̄xT
c β
)2
)

+
1
2 ∑

j

 ∑
c∈C(j)

∂hc

∂σ2
ε

− 1
1/σ2

µ + 1/ηj
−
(

ηj

σ2
µ + ηj

)2 (
¯̄yj − ¯̄xT

j (β+ λ)
)2


−∑

j

1
∑c∈C(j) hc

σ2
µ +

1
∑c∈C(j) hc

(
¯̄yj − ¯̄xT

j (β+ λ)
)( ¯̄yj − ¯̄xT

j (β + λ)
)

∑
c∈C(j)

h2
c /nc − ∑

c∈C(j)
h2

c /nc(ȳc − x̄T
c (β + λ))


− 1

2
Nstudents − Nclasses

σ2
ε

+
1
σ4

ε
∑

i

(
ỹi − x̃T

i β
)2

∂LL
∂λ

=∑
j

1
σ2

µ + ηj

(
¯̄yj − ¯̄xT

j (β+ λ)
)

¯̄xj

∂LL
∂β

=∑
c

(
˜̄yc − ˜̄xT

c β
)

˜̄xchc +
1
σ2

ε
∑

i

(
ỹi − x̃T

i β
)

x̃i + ∑
j

1
σ2

µ + ηj

(
¯̄yj − ¯̄xT

j (β+ λ)
)

¯̄xj
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E Bounding the Asymptotic Bias in the Kane and Staiger Proce-
dure

We know that

Bias(V̂ar(µ)j) =− 2
2

∑j |C(j)| |C(j)− 1| E

(β̂− β)T ∑
c,c′∈C(j)

x̄cµj


+

2
∑j |C(j)| |C(j)− 1| E

(β̂− β)T

 ∑
c,c′∈C(j)

x̄c x̄T
c′

 (β̂− β)


=− 2

(
∑

i
µj(i)x

T
i

)(
∑

i
xixT

i

)−1
 2

∑j |C(j)| |C(j)− 1| ∑
c,c′∈C(j)

x̄cµj


+

(
∑

i
µj(i)x

T
i

)(
∑

i
xixT

i

)−1
 2

∑j |C(j)| |C(j)− 1| ∑
c,c′∈C(j)

x̄c x̄T
c′

(∑
i

xixT
i

)−1(
∑

i
µj(i)xi

)

=Var(µj)− 2

(
∑

i
µj(i)x

T
i

)(
∑

i
xixT

i

)−1
 2

∑j |C(j)| |C(j)− 1| ∑
c,c′∈C(j)

x̄cµj


+

(
∑

i
µj(i)x

T
i

)(
∑

i
xixT

i

)−1
 2

∑j |C(j)| |C(j)− 1| ∑
c,c′∈C(j)

x̄c x̄T
c′

(∑
i

xixT
i

)−1(
∑

i
µj(i)xi

)

In the special case where each teacher teaches in the same number of classrooms and
each classroom has the same number of students, this simplifies to

Bias(V̂ar(µj)) = −2

(
∑j µj ¯̄xT

j

Nteachers

)(
∑i xixT

i
Nstudents

)−1 (
∑j µj ¯̄xj

Nteachers

)
(31)

+

(
∑j µj ¯̄xT

j

Nteachers

)(
∑i xixT

i
Nstudents

)−1(
∑c,c′∈C(j) x̄c x̄T

c′

Nclassroompairs

)(
∑i xixT

i
Nstudents

)−1 (
∑j µj ¯̄xj

Nteachers

)
(32)

We want to show that

− bT

(
1

Nstudents
∑

i
xixT

i

)
b ≤ b

1
Nclass pairs

∑
j

∑
c,c′∈C(j)

x̄c x̄T
c′ ≤ bT

(
1

Nstudents
∑

i
xixT

i

)
b ∀b ∈ Rk.

(33)
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Note that

1
Nstudents

∑
i

xixT
i =

1
Nstudents

∑
i

(
¯̄xj(i) + ˜̄xc(i) + x̃i

) (
¯̄xj(i) + ˜̄xc(i) + x̃i

)T

=
1

Nteachers
∑

j

¯̄xj ¯̄xT
j +

1
Nclassrooms

∑
c

˜̄xc ˜̄xT
c +

1
Nstudents

∑
i

x̃i x̃i

1
Nclass pairs

∑
j

∑
c,c′∈C(j)

x̄c x̄T
c′ =

1
Nclass pairs

∑
j

∑
c,c′∈C(j)

(
¯̄xj + ˜̄xc

) (
¯̄xj + ˜̄xc′

)
=

1
Nteachers

¯̄xj ¯̄xT
j +

1
Nteachers

1
|C(j)|(|C(j)| − 1) ∑

j
∑

c,c′∈C(j)

˜̄xc ˜̄xT
c′

=
1

Nteachers
¯̄xj ¯̄xT

j −
1

Nclassrooms

1
|C(j)| − 1 ∑

c
˜̄xc ˜̄xT

c

1
Nstudents

∑
i

xixT
i −

1
Nclass pairs

∑
j

∑
c,c′∈C(j)

x̄c x̄T
c′ =

1
Nclassrooms

∑
c

˜̄xc ˜̄xT
c

(
1 +

1
|C(j)| − 1

)
+

1
Nstudents

∑
i

x̃i x̃T
i

1
Nstudents

∑
i

xixT
i +

1
Nclass pairs

∑
j

∑
c,c′∈C(j)

x̄c x̄T
c′ =

1
Nclassrooms

∑
c

˜̄xc ˜̄xT
c
|C(j)|
|C(j)| − 1

+
1

Nstudents
∑

i
x̃i x̃T

i

(34)

Both the right hand side of both equations in Equation 34 are sums of positive definite
matrices, proving Equation 33. Therefore, we know that∣∣∣∣∣∣

(
∑j µj ¯̄xT

j

Nteachers

)(
∑i xixT

i
Nstudents

)−1(
∑c,c′∈C(j) x̄c x̄T

c′

Nclassroom pairs

)(
∑i xixT

i
Nstudents

)−1 (
∑j µj ¯̄xj

Nteachers

)∣∣∣∣∣∣
≤

∣∣∣∣∣∣
(

∑j µj ¯̄xT
j

Nteachers

)(
∑i xixT

i
Nstudents

)−1 (
∑j µj ¯̄xj

Nteachers

)∣∣∣∣∣∣
Plugging this into Equation 31, we find that

Bias(V̂ar(µj)) ≤ −
(

∑j µj ¯̄xT
j

Nteachers

)(
∑i xixT

i
Nstudents

)−1 (
∑j µj ¯̄xj

Nteachers

)

Bias(V̂ar(µj)) ≥ −3

(
∑j µj ¯̄xT

j

Nteachers

)(
∑i xixT

i
Nstudents

)−1 (
∑j µj ¯̄xj

Nteachers

)
.
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